论文

•  Huang, J., He, B., Yang, X., Long, X., Wei, Y., Li, L., Tang, M., Gao, Y., Fang, Y., Ying, W., Wang, Z., Li, C., Zhou, Y., Li, S., Shi, L., Choi, S., Zhou, H.*, Guo, F.*, Yang, H.* and Wu, J.* (2024) Generation of rat forebrain tissues in mice. Cell 187: 2129–2142
•  Zhang, L., Jia, Z., Wu, Q., Bai, T., Wang, B., Hu, X., Li, T., Liu, X., Fu, J., Chen, Y., Ding, X., Liu, Z., Xu, Z.*, & Zhou, H.* (2023) Alleviating symptoms of neurodegenerative disorders by astrocyte-specific overexpression of TMEM164 in mice. Nat. Metab. : 10.1038/s42255-023-00887-8.
•  Gao, N., Hu, J., He, B., Ji, Z., Hu, X., Huang, J., Wei, Y., Peng, J., Wei, Y., Zhou, Y., Shen, X., Li, H., Feng, X., Xiao, Q., Shi, L., Sun, Y., Zhou, C., Zhou, H.* & Yang, H.* (2021) Endogenous promoter-driven sgRNA for monitoring the expression of low-abundance transcripts and lncRNAs. Nat. Cell Biol. 23(1): 99–108.
•  Zhou, H.*, Su, J., Hu, X., Zhou, C., Li, H., Chen, Z., Xiao, Q., Wang, B., Wu, W., Sun, Y., Zhou, Y., Tang, C., Liu, F., Wang, L., Feng, C., Liu, M., Li, S., Zhang, Y., Xu, H., Yao, H., Shi, L., Yang, H.* (2020) Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 181: 1-14
•  Zhou, C., Hu, X., Tang, C., Liu, W., Wang, S., Zhou, Y., Zhao, Q., Bo, Q., Shi, L., Sun, X.*, Zhou, H.*, Yang, H.* (2020) CasRx-mediated RNA targeting prevents choroidal neovascularization in a mouse model of age-related macular degeneration. NSR nwaa: 33
•  Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei Y., Zeng, R., Li, Y.*, Zhou, H.*, Guo F.*, Yang H.* (2019) Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 517: 275-278
•  Zhou, H., Liu, J., Zhou, C., Gao, N., Rao, Z., Li, H., Hu, X., Li, C., Yao, X., Shen, X., Sun, Y., Wei, Y., Liu, F., Ying, W., Zhang, J., Tang, C., Zhang, X., Xu, H., Shi, L., Cheng, L., Huang, P.*, Yang, H.* (2018) In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR/dCas9-activator transgenic mice. Nat Neurosci 21: 440-446
•  Yao, X., Wang, X., Hu, X., Liu, Z., Liu, J., Zhou, H., Shen, X., Wei, Y., Huang, Z., Ying, W., Wang, Y., Nie, YH., Zhang, CC., Li, S., Cheng, L., Wang, Q., Wu, Y., Huang, P., Sun, Q., Shi, L., Yang, H.* (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27: 801-814
•  Peter, S., Ten, M., Stedehouder, J., Reinelt, M., Wu, B., Zhou, H., Zhou, K., Boele, H. J., Kushner, S. A., Lee, M. G., Schmeisser, M. J., Boeckers, T. M., Schonewille, M., Hoebeek, F. E.* & De Zeeuw, C. I.* (2016) Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat Commun 7: 12627
•  Zhou, H., Voges, K., Lin, Z., Ju, C.* & Schonewille, M.* (2015) Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. J Neurophysiol 113: 2524‐2536
•  Sepulveda, D., Barrera-Ocampo, A., Hagel, C., Korwitz, A., Vinueza, M. F., Zhou, K., Schonewille, M., Zhou, H., Velazquez-Perez, L., Rodriguez, R., Villegas, A., Ferrer, I., Lopera, F., Langer, T., De Zeeuw, C. I.* & Glatzel, M.* (2014) Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest 124: 1552‐1567
•  Zhou, H., Lin, Z., Voges, K., Ju, C., Gao, Z., Bosman, L. W., Ruigrok, T. J., Hoebeek, F. E., De Zeeuw, C. I.* & Schonewille, M.* (2014) Cerebellar modules operate at different frequencies. eLife 3: e02536