发布时间:2019-12-12
一直以来,拥有一种能够随意控制基因表达的技术成了很多生物学家的梦想。CRISPR/Cas9系统的出现满足了这种需要,Cas9就像是一把DNA剪刀,在sgRNA的带领下,特异性地切割目的序列,并形成DNA双链断裂。后来的研究通过失活Cas9的核酸内切酶的活性而获得了dead Cas9(dCas9),dCas9只会在sgRNA的引导下特异性的结合到目的位点,而不会产生切割。如果在dCas9上融合激活元件的话,就可以特异性地过表达目的基因。这种方法相对于传统的过表达具有巨大的优势;因为它不受基因大小的限制,可以非常方便同时上调多个基因的表达,而且这种过表达会更加“nature”。虽然dCas9介导的基因激活已经被广泛的用于体外研究,但利用dCas9在体内控制基因表达还一直没有实现。
这项研究中,研究者首先开发了一种较于以往更加强大的激活系统(SPH),并且分别在人和小鼠的细胞里验证了SPH系统的高效性。在此基础上,研究者构建了受Cre重组酶调控的SPH转基因小鼠,并且证明了在SPH小鼠的原代细胞里导入sgRNA和Cre重组酶可以激活基因和长链非编码RNA。为了确定该转基因小鼠在体内实验中的有效性,研究者通过尾静脉注射了表达Cre和sgRNA的质粒,发现SPH确实可以在肝脏内高效地激活基因的表达。尤其是在激活了Wnt通路里的关键基因Dkk1,肝的代谢分区会被改变。为了进一步验证该激活平台是否可以用来研究神经系统的功能,研究者在中脑定点注射了靶向三个转录因子Ascl1, Neurog2以及Neurod1的AAV-sgRNA,结果显示星形胶质细胞可以直接被转化为功能性神经元。最后研究者在SPH转基因小鼠脑部定点注射了靶向十个基因或者八个基因加两个长链非编码RNA的AAV-sgRNA阵列,实现了多个基因在神经元内的同时激活。因此,该研究证明了可以利用SPH 小鼠在脑内实现复杂基因网络的调节。
该项工作主要由博士后周海波,博士生刘俊来、周昌阳、高妮、饶志平、李贺,在中科院神经所灵长类疾病模型研究组杨辉研究员和上海科技大学黄鹏羽的共同指导下完成,课题组的其他成员积极参与,并得到了神经所张旭研究员、程乐平研究员、徐华泰研究员和神经所基因编辑平台施霖宇博士的大力协助。
研究总结模式图。该研究首先开发了SPH激活系统并且构建了受Cre重组酶调控的SPH转基因小鼠,研究者证明了该小鼠可以用于改变肝的代谢分区,星型胶质细胞向神经元的直接转分化以及在脑内实现多基因的同时激活。